
Scrum in a Multiproject Environment:
An Ethnographically-Inspired Case Study on the Adoption Challenges

Artem Marchenko
 Nokia, Hatanpäänkatu 1, FIN-33100

Tampere, Finland
artem.marchenko@nokia.com

Pekka Abrahamsson
 VTT Technical Research Centre of Finland,

P.O.Box 1100, FIN-90571 Oulu, Finland
Pekka.Abrahamsson@vtt.fi

Abstract

Agile methods continue to gain popularity. In
particular, the Scrum method appears to be on the
verge of becoming a de-facto standard in the industry,
leading the so called Agile movement. While there are
success stories and recommendations, there is little
scientifically valid evidence of the challenges in the
adoption of Agile methods in general, and Scrum in
particular. Little, if anything, is empirically known
about the application and adoption of Scrum in a
multi-team and multi-project situation. The authors
carried out an ethnographically informed longitudinal
case study in industrial settings and closely followed
how the Scrum method was adopted in a 20-person
department, working in a simultaneous multi-project
R&D environment. Altogether 10 challenges pertinent
to the case of multi-team multi-project Scrum adoption
were identified in the study. The authors contend that
these results carry great relevance for other industrial
teams. Future research avenues arising from the study
are indicated.

1. Introduction

Software development methodologies are constantly
evolving due to the contemporary dynamic business
environments, fast development of the technologies
and persistent increase of end user demands. During
the last years, Agile software development methods
have gained popularity and are increasingly important
to a significant number of software development
organizations. [1] The area of Agile software
development methodologies has been researched to
some extent. [2]

Scrum is an Agile software development process
that focuses on project management practices. Lately it

has gained considerable popularity in large companies.
For example, the literature shows that Scrum has been
adopted by large companies such as Yahoo! [3],
Microsoft [4], Intel [5] and Nokia [6].

In the current literature, the adoption of Scrum is
usually situation-specific focusing on a single team and
a single project. [7] However, in the large companies
the opposite can frequently be the case, with several
teams in each department supporting several projects
simultaneously. [8] Surprisingly, despite the growing
popularity the Scrum, the process has not been
examined in the existing studies – less than 5% of the
existing scientifically valid evidence on Agile software
development addresses Scrum. [2]

This study aims at contributing to this knowledge
gap in the field of Agile software development in
general and the process of adoption of Scrum in
particular. The focus of the research is the adoption of
Scrum in a multi-team and multi-project environment.

We examined the adoption of the Scrum process in
a three-team multi-project environment, where one of
the authors led the adoption process and took the role
of one of the Scrum Masters. The research question
was: How can Scrum be used in a multi-team and
multi-project environment and what challenges, if any,
emerge from the empirical qualitative evidence? In line
with this, we carried out an ethnographically-inspired
case study applying certain elements of the grounded
theory approach, and compiled 32pages, or 18075-
words, of field notes in a diary kept during the 8
months of observation.

The principal results of the study are an increased
understanding of the application of Scrum in the
setting, as well as a set of challenges to be aware of
during the adoption of Scrum in a multi-team multi-
project environment. We also describe the evolution of
the challenges and of the attempts to solve them.

The results bear direct pragmatic implications and

we contend that the identified challenges have
relevance for similar organizations and settings
planning the adoption of Scrum. The research
community can use the results as they are scientifically
grounded on the ethnographically-inspired research
approach, and they identify future research avenues.

The rest of the paper is organized as follows. In
Section 2 an overview of the related work is presented.
In Section 3 the research environment, method and
research questions are described. In Section 4 our
findings are reported. Section 5 presents a discussion
on the findings and Section 6 provides the conclusions.

2. Related work

In recent years, Agile software development
methods have gained increasing popularity. However,
there are few empirical studies on the topic. The most
recent and in-depth systematic review of 1,996 articles
and studies in the area identified only 36 empirical
studies of acceptable rigor, credibility and relevance.
[2]

While some success stories [9] and adoption
recommendations [10] have been published, the
process of adopting Agile methods and especially
Scrum has been given little attention. Begel and
Nagappan [4] also claim that there has been limited
empirical evidence on the usage/perception of Agile
software development practices. In particular there is
little focus on the problems to be expected, when
adopting Scrum in multi-team and multi-project
environments.

According to Schwaber and Beedle [11] there is a
list of practices to follow in order to use Scrum.
Schwaber and Beedle [12] divide these practices into
seven categories: The Scrum Master, Product Backlog,
Scrum Teams, Daily Scrum Meetings, Sprint Planning
Meeting, Sprint, Sprint Review. Later Schwaber [13]
added Sprint Retrospective to the list. In the existing
literature we identified a number of challenges related
to the adoption of the Agile processes in general, and
Scrum in particular. We divided these findings into the
above eight categories.

Schwaber and Beedle’s [12] [13] categories should
not be seen as a scientific research framework but they
serve as a coherent structure for reporting the results.
An alternate avenue to have taken would have been the
selection of an adoption theory to guide the analysis.
However, the majority of the adoption literature (e.g.
Technology Adoption Model by Davis [14]) is mostly
concerned with the identification of determinants and
variables as variance theories often are (cf. [15]). In an
area where very little research exists, an exploratory
strategy is more appropriate.

2.1. The Scrum Master

The Scrum Master is a new management role
introduced by Scrum. The Scrum Master is supposed
to facilitate the process and to help people resolve
problems (including psychological ones) while
enforcing the process rules.

Silva and Doss [16] report that during the massive
adoption at Capital One they found it challenging to
maintain the quality of Agile coaches.

Begel and Nagappan [4] report that a survey
performed on the global level in Microsoft, where
Scrum is the most popular Agile methodology,
revealed that “too many meetings” were considered to
be the second biggest problem in the Agile
methodologies. One of the problem roots is claimed to
be the inefficiency of the meetings, especially when
poorly run by a Scrum Master who is not focused
enough to run the meeting quickly.

2.2. Product backlog

Product backlog is an evolving list of technical and
business functionality that needs to be developed.
Product backlog is supposed to be under the sole
control of the Product Owner. The Product Owner has
to make a clear list of priorities and show the project
perspective to the team.

Moore et. al. [17] found that when implementing
Scrum in a formalized environment the most
challenging part was the development of a good
product backlog. One tends to underestimate the time
and effort involved in putting the backlog in place and
developing the user stories for each backlog item.

2.3. Scrum teams

A Scrum team should be a cross-functional and self-
organizing group of individuals working on a project.
A Scrum team is responsible for meeting the sprint
goal, however, it is supposed to be autonomous and
have control over the exact process.

Sridhar et. al. [18] identify the cultural change from
isolated specialist work to collaborative cross-
functional style of work as being one of the key issues,
when adopting an Agile methodology.

Greene [5] notes that, in the situation where the key
skill is the domain knowledge, the need for very
specialized domain knowledge makes it complex to
ensure sufficient cross-training. Greene also states that,
when applying the socially intensive Agile
programming methods, the team members’
communicational preferences play a significant role.

Schatz and Abdelshafi [19] identify a career
perspective challenge. After switching to Agile

methodologies, people can become unsure about the
career growth in the new environment since the
traditional career ladder is not really made for cross-
functional specialists.

For most Yahoo! Music teams, Agile methods
required more discipline than before - keeping it
simple required a sustained effort. According to Cloke
[3] switching to Agile demands a significant shift in
the thinking of the team.

At Google an ongoing issue is the QA involvement.
The reason is that the QA Engineers support several
projects. Some of the projects are not Agile, i.e.
require little attention during development, but a lot of
it at the end. This makes it challenging for the QA
engineers to spend time each day on the project to give
the Engineers immediate feedback. [20]

At Yahoo! Music they experienced handovers with
the functional departments as very difficult to resolve
within the sprint boundaries. The sometimes awkward
co-existence of Agile and traditional product lifecycles
continues to be a challenge at Yahoo! [3]

In Microsoft the scalability to large projects is
considered to be the biggest problem for the adoption
of Agile methodologies. The problem of inter-team
coordination was found to be the 5th problem. [4]

Mahanti [21] claims that Nokia noticed that XP
works best with small, independent, and co-located
teams. According to Mahanti, Nokia found that hybrid
approaches to software development were a more
favorable option. He also refers to Motorola where it
was found that Agile teams had difficulties interfacing
with teams using traditional practices.

2.4. Daily Scrum meetings

A daily Scrum meeting is a short, stand-up,
typically 15-minute meeting, during which the team
members explain to each other what they accomplished
since the last meeting, what they are going to do by the
next meeting and what obstacles are on the way.

Cloke [3] reports that in Yahoo! Music team daily
standup meetings run “by the book” started as
disappointingly sterile so the team had to extend the
meeting in order to drill out the useful information
needed to reach the state of collaboration.

Greene [5] reports that in one software development
team at Intel they had to de-emphasize explicitly the
“what did you do yesterday?” daily question, as people
felt it was a general status meeting question and tended
to lose too much time on it.

2.5. Sprint planning meeting

During the sprint planning meeting the team
together with the Scrum Master and the Product Owner

plans the functionality to be built during the coming
sprint, and how the team is going to complete it.

Striebeck [20] reports that, in Google, Product
Managers often refuse to make prioritization decisions
because of the engineering driven culture. Often, when
a Product Manager was asked for prioritization of a
feature, he turned to his Technical lead and simply
asked “What do you want to do?” Regularly, the tech
leads do not see the need to make such decisions
during the planning meetings as they know that they
can make them at a later point.

At Yahoo! Music measuring the team velocity was
a challenge that stroke back at the release planning
time, when the team was naturally hesitant to estimate
the complexity of the backlog items, as it had a limited
grasp of actual performance at the task level. [3]

2.6. Sprint

Sprint is a period of time, when a team is focusing
on meeting the sprint commitments. During this period
of time the team is supposed to have full authority over
its actions and no external influence from the Product
Owner, or anybody else, is allowed.

Cohn and Ford [22] report that a surprising number
of developers view using Agile processes as an attempt
to micromanage. Since approaches like Scrum and XP
accelerate project cycles, developers interact with their
managers more often but for shorter periods of time.

Begel and Nagappan [4] find similar fears in
Microsoft where the fear of micromanagement is
viewed as one of the reasons why daily standup
meetings can be ineffective.

Sridhar et. al. [18] identify the shift in the power
balance between project managers, stakeholders and
the team to be the biggest challenge, when adopting an
Agile methodology. According to them, since much of
the knowledge in Agile development is tacit and
resides in the heads of the development team members,
this can make the organization strongly dependent on
the development teams. Such a situation may not be
acceptable for many organizations.

2.7. Sprint review

A Sprint review meeting is held at the end of every
sprint. During this meeting the team demonstrates to
the Product Owner, and optionally to the customers,
what it was able to accomplish during the iteration.

We did not find any empirical (i.e. anecdotal or
scientific) evidence on the Scrum adoption challenges
related to the sprint review. To our knowledge, the
current literature reports no challenges in sprint
reviews.

2.8. Sprint retrospective

Sprint retrospective is supposed to be a focused
time dedicated to the adjustment of the software
development process and its improvements. Therefore
we put issues related to development process
improvements into this category.

Packlick [23], reporting on XP adoption that started
from Scrum-like practices in a large organization,
notices that in their experience development teams tend
to reach a plateau after implementing a subset of Agile
practices. In general, teams improved for four months
to a year and then slowly leveled out.

Schatz and Abdelshafi [19] also noticed the danger
of slipping back to old practices. When the goal of
establishing a balanced and consistent workload is met,
the team, product owners and stakeholders can become
“bored” with the process. Without continuous
improvement being everyone’s main focus, it becomes
easy to lose sight of the Agile principles that brought
success in the first place.

3. Research design

This study covers an 8-month-long period of time
from the Scrum adoption started in April 2007 to
December 2007.

3.1. Research setting

The case department is a part of Nokia responsible
for speech recognition, speech synthesis and related
areas. Together with associated people formally
working in the other functional departments (i.e. UI
designer, test manager, build manager) there are about
20 people. In the department these positions are full or
almost full-time involved in its projects. The
department ships most of its software deliveries
directly to phone product programs. The majority of
people are located in closely located two person
offices. At the beginning of this research there was no
common meeting place allocated for the department.
During the observed period, teams managed to acquire
a common room dedicated to the department.

The Software Engineers officially belong to two
sub-departments. The Chief Engineer reports directly
to the Department Head as shown in Figure 1. During
the adoption process, these developers formed three
Scrum teams, referred to below as E-team, T-team and
S-team. The UI Designer, Build Manager and Test
Manager never belonged to the Scrum teams and
cooperated depending on the need.

Figure 1. Department structure
During the study period one of the authors was in

the department as Chief Software Engineer. He had
some previous experience with Agile methods – about
a year of trying some Agile practices within individual
projects in the same department.

At the time of the adoption of Scrum, the
department’s Engineers had some experience with
Agile methods. In 2005 one of the authors did some
early trials of Scrum in a small single project team
which later became a core of the sub-department A.
The early trials brought positive results: the project
was delivered ahead of schedule, the customer
satisfaction level was above the average department
level and the team was happy. In 2006 the author tried
introducing Agile elements in a bigger and more
complex project with the sub-department B members.
In this project, a smaller number of Agile practices
were introduced. Still the results achieved were
noticeably better than the average ones and Project
Manager reported that he was surprised there were so
few problems in the final integration and localization
that usually are the sources of difficult problems. These
individual project incidents served as motivators to
increase the level of Agile adoption in the department.

The Scrum adoption started in April 2007 with a
single pilot team (E-team) consisting of 5 team
members in sub-department B, one of the authors took
the role of Scrum Master and the Head of sub-
department A took the role of Product Owner. The rest
of the department joined Scrum in August 2007.
Everybody got at least one-day-long Scrum training in
mid-May 2007, all the people performing as Scrum
Masters took the Certified Scrum Master courses
before starting in this position.

3.2. Research method

We performed an ethnographically-informed

Department
Head

Sub-
department A

Head

Sub-
department A

Sub-department
B

Chief
Engineer

Scrum
team

 T-team

Sub-department
B Head

<missing>

Scrum
team

 E-team

Scrum
team

 S-team

empirical case study [24]. During the period of
observation one of the authors was an active team
member playing one of the Scrum Master roles and
overseeing the whole adoption process. While
performing the everyday actions, the author also
reflected on the observations.

The results of the participant observation were
recorded into a research diary that was kept daily in the
beginning of the observation period and daily to
weekly towards the end of the study period. When the
author was not able to observe the actions directly, a
summary of what happened during the absence period
was filled after discussions with the team members.

The diary contains observations of the team actions,
summaries of the talks to team members, the Product
Owner and interested stakeholders (e.g. Department
Manager), as well as the author’s impressions of the
reasons behind the actions observed. The observer’s
thoughts were always clearly separated from the
participants’ observations. An anonymized extract of a
diary entry is provided below:

November 19, Monday
<s-team> retrospective day
- ScM took more active role in the retrospective (some
team members, especially A-guy earlier explicitly
asked ScM to make more decisions) and focus the retro
on the sprint planning procedure. The main problem
was everybody’s uncertainty about what to do during
the sprint planning. e.g. ScM kept asking the team "are
you committed?" or "how big is it?" and everybody
was silent, especially when they didn't really know the
answer. A-guy then expressed that the team should
have stated that more clearly.
 - The proposal (both by the team members and ScM)
was to create a more specific sprint planning
procedure with clear moments when all the team
members have to answer with one of the several
options (yes, no, more discussion needed right now,
research task needed). ScM later recorded the
procedure to wiki as the first concrete'n'agreed
working agreement.

During the observation, special consideration was
given to the challenges in the Scrum adoption process.
As reflective practitioners [25] we applied the
grounded theory approach [26, 27]. In practice, this
means that the researchers did not expect any particular
challenges to appear or to happen. The research
protocol followed required an accurate recording of
whatever the team itself considered to be challenging
or painful. We found that the sprint retrospectives were
the most useful for the participant observations.

Our study aims at answering the following research
question: How can Scrum be used in a multi-team and
multi-project environment and what challenges, if any,

emerge from the empirical qualitative evidence?

3.3. Data collection and analysis

During the eight-month-long period of observation
an 18,075-word diary was compiled.

On examining the diary, a set of issues was
identified as being challenging or painful by the team
members. These challenges are reported in the
empirical results section as a short summary and a
chronologically arranged set of extractions from the
related diary sections, edited slightly for clarity. It
should be noted, that all the quotations are of the actual
participants from the development process (team
members, Scrum Master and Product Owner).

Finally the set of challenges was divided into
categories related to the Scrum process concepts
presented in Section 2. To validate our findings we
used the member-checking approach and had a few of
the team members study the findings and their
evolution. This subsequently led to a few adjustments
in the material presented.

4. Empirical results

In this section we present a set of challenges
observed in the course of the adoption process. We
categorize our findings in the same structure as the one
presented in Section 2 – according to the Schwaber and
Beedle [12] [13] view of what is needed in order to
implement Scrum. It should be noted that the
challenges identified do not necessarily go hand in
hand with the categories as they were not so
comprehensive. Each adoption challenge is presented
systematically using the timeline of 8 months (when
applicable) to explain how the challenge evolved over
the time period. We also include an explanation of how
the issue was subsequently handled. Furthermore,
when a particular challenge can belong to several
categories it was put into the most relevant one.

4.1. The Scrum Master

The role of Scrum Master was found to be a crucial
one during the adoption phase. In particular, it was
found challenging to find a balance between the
enforcing and caring roles.

4.1.1. Challenge 1: Placing an overemphasis on the
Scrum process and practices. At times it felt like the
Scrum Master was pushing people too much towards
what he wanted to see. Sometimes encouraging people
to self-organize was viewed as the opposite: the Scrum
Master forced team members to “self”-organize. We
found that being too committed to the process is more

likely to be harmful, than beneficial.
From the very beginning, during the daily stand-

ups, the developers addressed the Scrum Master more
than the other team members. It turned out that the
daily standup felt more like a typical status meeting to
them.

The Scrum Master tended to be “too concerned”
about solving the people’s problems, instead of
allowing them to solve the problems themselves

In May, there was a tendency to follow the Scrum
rules of freezing the content for a sprint. It escalated
almost into a conflict with one of the team members.
“Scrum rules are too strict and against common sense”.
As a result of a number of similar conflicts in May, the
team decided not to let the Scrum Master and Product
Owner be present in their retrospectives (the idea came
from the common one day Scrum training). As a result,
the team found that the retrospectives became more
comfortable. However, as a side consequence, the
retrospectives became less organized and solved fewer
issues, they also took a considerable amount of time to
get started and only those people who were the most
outgoing expressed their concerns. Also, the
retrospectives produced less specific actions to be
carried out. In one team member’s opinion, the reason
for solving fewer issues was that “Scrum was already
good and adjusted to the situation and there were
simply no more issues to be resolved”.

In June one of the personal conflicts with the Scrum
Master was caused by the fact that some people on the
team felt upset because of the Scrum Master’s
eagerness to promote Scrum. One of the team members
claimed that "It might have worked in the US, but not
in Finland, where modest people are valued". The
Scrum Master was perceived as the one being involved
everywhere and overly emphasizing himself. The
Scrum Master was advised to listen to people (instead
of the Scrum books) more. He was also recommended
to ensure that his gestures would say the same as his
words: e.g. in some situations the Scrum Master
claimed not to be an expert in some area, but his
gestures expressed the opposite.

In June one of the team members reflected about the
beginning of the Scrum adoption. According to him,
when the Scrum was introduced, the process was
emphasized, and people had to adapt, not vice versa.
Retrospectives seemed to help in resolving this issue.

After these June conversations, the Scrum Master
took care to be less aggressive and listen more. The
results were positive.

Still, in August at least one team member
complained that Scrum was too inflexible. It felt like
Scrum made everything feel more shared, leaving little
space for the individual work. "We are not in a
kindergarten and everybody fulfills their tasks. But it

seems that the management believes this is a
kindergarten, since they support Scrum so strongly".

In September an S-team member was annoyed
about the Scrum Master asking the three questions in
the daily meeting. The team member claimed these
questions to be simply “stupid”, since he was already
busy with the task hanging on the board. In September
the same team wanted the Scrum Master to report more
about what he was doing in order to make the situation
fairer.

4.1.2. Challenge 2: The Scrum Master caring only
about the individuals and interactions (and ignoring
the process). Caring too much and being too cautious
can cause the team to lose the feeling of discipline
essential in software engineering. Individuals and
interactions should be more important, than processes
and tools, but the evidence indicates that there is some
value in the process as well, especially when the Scrum
Master is not an experienced facilitator.

Inspired by the literature [13], from the very
beginning the Scrum Master tried to keep the teams as
self-organized as possible. The Scrum Master
approached the team members with questions, raised
the issues and tried to facilitate problem solving, but
for a long time tried not to propose any solutions.

In June, one of the team members commented to the
Scrum Master that, while listening to people and not
pushing his own ideas is important, the Scrum Master
should not be “too nice”. For example, sometimes
during the daily standup the team might go off-track
into a side conversation. In this case the Scrum Master
should keep the discussion on-track. The same team
member insisted that it was the Scrum Master’s
responsibility to resolve conflicts in the team. “You are
the Scrum Master and should look after the process".

In August one team member noted that if the team
was always allowed to change its commitment during
the iteration, the concept of a sprint lost its meaning.

In September the E-team Scrum Master was the one
who placed the tasks on the information radiator (i.e.
the wall). He shared the concern that the team did not
do things the right way if he put the tasks on the wall
instead of the team members.

In September the same E-team retrospectives
became less useful than before. In the E-team, the
Scrum Master was a sympathetic person who wanted
to let the team decide on the retrospective process.
However, the meeting lost its structure. While it was
still used for resolving the issues and talking about the
process, the amount of root causes analyzed and
actions taken dropped significantly.

In October the author discussed with the E-team
Scrum Master the fact that during the several last
retrospectives the team identified no possible

improvements. The E-team Scrum Master agreed that
their sprints did not look that Scrumish anymore, and
tasks were late on the task board. He explained that
without someone taking a personal interest in Agile it
became quite easy to slowly drift back to the “old
ways”. In the next retrospective the E-team raised this
issue and some corrective actions were identified.

In November the S-team was disappointed (and one
team member was even angry) about the fact that the
Scrum Master was not leading the sprint planning
meeting enough. The team consisted of not very
talkative people who just started working together, and
without a clear leader there was a lot of silence at the
meetings, while people had some troubles, e.g. with
understanding the particular Product Owner’s request.

Later in the November retrospective this issue was
discussed and the Scrum Master was asked to be more
decisive in the situations when the team was unsure
what to do. The Scrum Master helped the team to craft
a few procedures the team members should follow
during the sprint planning. These procedures helped to
eliminate the moments of uncertainty.

In December during the retrospective process,
which was driven by the Scrum Master (in response to
an earlier team request), the team came up with several
self-disciplining actions. For example, “If it is
important, then there should be a card” [on the tracking
board] and “Writing tests is part of the everyday stuff
as much as writing the code”.

4.2. Product backlog

In the observed case we noticed that it was difficult
for the Product Owner and organizational roles close to
him to make decisions about the project priorities and
present an attractive product vision.

4.2.1. Challenge 3: A lack of clear management
expectations and actions. The need for a management
vision was a constant request throughout the Scrum
journey. The lack of a management vision was reality
long before the Scrum adoption, but the Scrum
introduction made it all the more obvious and thus
more painful.

From the very first adoption weeks and building of
the initial product backlog, it was evident that there
was no single clear priority list and the amount and
desired direction of the long-term research was not
clear. The realization of this enabled change and during
the adoption journey the understanding of a high level
vision was constantly growing.

In August after the whole department switched to
Scrum, another team found a permanent problem
because the product backlog items were not in a
priority order – during the sprint planning their Product

Owner often wanted the team to do some item from the
middle of the list. It took a couple of months of trial
and effort to have the top of the product backlog
prioritized for the sprint planning. At that point there
was no single product backlog, but instead several lists
were dynamically assembled into an actual product
backlog for the sprint planning.

In September with the introduction of the whole
department backlog and the whole department it
became clear that the department was indeed trying to
support and develop many projects simultaneously.
This led to splitting the backlog into more manageable
sub-categories. It also became clear that sometimes the
Product Owner was prioritizing some project of little
benefit for the whole department, but of high benefit
for him personally.

It is interesting to note that in September one of the
teams was disappointed with the Product Owner
accepting “automatically” everything the team was
reporting (about the completeness of the product
backlog item). The team was clearly expecting product
backlog management to take a more active role in
dealing with the product backlog item deliveries.

4.2.2. Challenge 4: Too much maintenance and bug
fixing undermining the team productivity and
morale. Challenges related to the team being
overloaded with a heavy amount of maintenance and
bug fixing are not Scrum specific, however, they
surfaced in the adoption process of Scrum. After the
practices of short iterations and velocity measurement
were introduced, it became clear just how much effort
went into maintenance. The need to make an explicit
decision on whether bug fixing or new functionality
was more important was not always comfortable either
for the Product Owner or the team.

In the case environment, the situation was amplified
by the fact that the software developed was supposed
to work on many platforms while there was no
reasonably large automated test suite. Regularly the
teams were getting bug reports reproducible on the
specific platform only (or on hardware only). The
teams spent a reasonable amount of time on just getting
the version of the platform, where a bug had been
found.

In April, the E-team decided to explicitly allocate
time for maintenance and side-line tasks (e.g. not
critical algorithm improvements) during the sprint
planning.

In May, the Scrum Master and Product Owner were
surprised to find out how easily the extra work slipped
into a sprint, because of the Department Head’s
requests and sudden bugs.

In August after a particularly long and difficult bug
fixing the Product Owner told the team: “If you think

you could do something in order to prevent bugs in the
future, please, do it". It did lead to a more careful
attitude towards testing the newly created material, but
did not lead to the introduction of test driven
development or to automating more test cases.

In autumn, the S-team identified the need for the
new development as one of the top requests from a
couple of retrospectives in a row. The reason was that
their Product Owner highly prioritized one of his
favorite and bug-filled projects. The low quality of that
project suddenly became everybody’s pet gripe instead
of being some people’s once-in-a-while issue.

4.3. Scrum teams

In the observed case the most important team-
related challenges related to building a cross-functional
team from initially highly specialized people.

4.3.1. Challenge 5: Fitting Scrum and short
iterations into research intensive teamwork. This
concern was expressed on the very first day of
adoption. The department had a reasonable amount of
long-term research activities performed mostly by the
specialized individuals. These activities were
sometimes related to the ongoing projects, sometimes
not. The need to timebox the activities that were
difficult to evaluate and were quite different from the
activities of the rest of the team remained a challenge
for some time. Eventually the specialists started
performing more of the external expert roles. One of
them collaborated with the team only during the sprint
planning and reviews, the other one used to come to
daily stand-ups two times a week only. The research-
related part of the work was often handled on the basis
of the individual agreement with the Product Owner.

For these almost remote experts, the practice of
timeboxing did not allow them stray too far from the
team activities. Those wanting were able to follow
each other’s progress and when possible, the
collaboration did happen more easily.

4.3.3. Challenge 6: Overspecialism undermining
collaboration. The E-team had several specialized
team members that made it difficult for the team itself
to have common reference points during the estimation
and planning sessions and for the other team members
to collaborate with the specialists.

Already in April one of the specialists felt
uncomfortable about demonstrating her work, because
not many people could recognize any improvements.

During the sprint plannings in May, it was clear that
people working on the related things liked Scrum and
people working on individual items did not. It was
more evident that a couple of the team members were

doing things only slightly related to the other people’s
work. In the meetings these team members were silent
most of the time.

For specialists the sprint planning meetings were
feeling quite silly. They were specialists, working on a
single full sprint task, did not need any help and could
not help anybody else. Some of the specialist work was
out of the product and sprint backlogs and was tracked
between the Product Owner and specialists.

At the end of May, one of the specialists refused to
participate in the estimation/planning process at all.
She listened but did not play planning poker and
"didn't care" about the number on the items associated
with her. The reason she gave was that in a specialized
team it was difficult to understand what the other
specialists were actually going to do.

In June one of the team members noted during the
daily standup that Pair Programming and TDD (which
he tried together with the Scrum Master) made it easier
for him to get started in a specific and somewhat
specialized area.

In the June retrospectives the specialist that decided
to participate in the team activities the least was
looking disconnected from the others - for the whole
sprint he was working on "his" large task and was not
taking part in the daily stand-ups. However, he
presented his results and expressed the hope that after
the next sprint the other people would be able to help
him with the "general software" issues. In reality it
happened much later.

In June one of the team members told the Scrum
Master that it might be quite difficult to use Scrum in
the team, because there were several sub-teams that
had multiple different goals.

In July one of the specialists tried estimating and
planning her work together with the team, but it was
difficult for her. She lacked the common reference
points - her tasks and area of expertise were quite
different from the other team members

In August another team member expressed the
opinion that they were a specialized team and
sometimes they were just used to the particular work
being done by a particular person even though at times
some other people could actually help though with the
lower speed.

By November-December, most of the
individualistic/specialized team members of the pilot
E-team were making progress visible to the rest of the
team (by putting the corresponding cards on the task
board) and the team also became more capable of
helping each other.

4.3.4. Challenge 7: Overindividualism. This issue is
often related to overspecialism, but is separate. Some
people (usually excellent performers) do not value

team collaboration and prefer individual work to the
extent of sabotaging the whole team activities

Already in May the team decided to allow one
specialist to participate in only two daily stand-ups a
week and another team member not to come unless he
had something to share.

From May to June one of the team members was
working on a particular task in parallel with some other
team members "in order to choose the best
implementation later". While the idea of figuring out
the best implementation was definitely valuable, the
individual style of work was producing a solution
poorly integratable with the others’ work.

In August the conflict between the abovementioned
person and the Scrum Master (more) and the same
person and the team (less) came to its culmination.
This team member observed the rules (during planning,
estimation, daily stand-ups), when team members
asked him, but not when the Scrum Master asked.
When he missed a daily standup another team member
said "I think everybody should be present, but maybe
it's only my opinion". In that particular case the
individualist had a respectable reason not to come, but
the team already assumed it was his negligence of them
or the common rules. In one daily standup it was
physically visible how this same individual positioned
himself as a solo: the whole team was standing in front
of the card board in a half-circle while he stood to the
side.

Later this issue was raised in the retrospective in the
absence of the Scrum Master. Almost nothing has been
recorded as the official retrospective summary.
However, the issue seemed to be discussed seriously.
The solution was more-or-less that strict application of
the common rules should be more attentive to the
concrete circumstances. So the situation somehow fell
between the lines, but it seemed the individual
discussed would also try to participate more in the
process - not-necessarily in terms of the number of
daily Scrums attended, but more in terms of a real
involvement (e.g. not looking skeptical during the
sprint planning).

After this retrospective the atmosphere in the team
became more productive and collaborative. The Scrum
Master felt that an invisible barrier fell down – the
team had still progress to be made in making estimates,
updating each other, etc, but it somehow felt that now
these were work issues to be resolved or considered,
and not to be ignored.

In September a similar issue arose in the T-team.
One of the team members was more ignorant of Scrum
than the others. However, we do not know how this
issue was resolved if it was resolved at all.

As mentioned in Section 4.3.3 by November-
December most of the individualistic/specialized team

members of the pilot E-team were making their work
visible to the rest of the team.

4.4. Daily Scrum meetings

We did not observe any daily Scrum meeting
related to challenges other than the ones described
above in Sections 4.3.3 and 4.3.4.

4.5. Sprint planning meeting

In the observed case, the largest challenge related to
the sprint planning was balancing the workload, i.e. the
teams tried to avoid overcommitting themselves.

4.5.1. Challenge 8: Committing to too much.
Committing to too much work for the sprint was one of
the common problems during the adoption journey,
especially in the beginning.

In May the Scrum Master and Product Owner were
surprised to find out how easily extra work was able to
slip into a sprint, because of the higher management
requests and sudden bugs. It escalated to almost a
conflict (“Scrum rules are too strict and against
common sense”).

In the June sprint, there was a particularly difficult
situation with one of the team members desperately
trying to complete one product backlog item up to the
point of doing overtime (not officially permitted). His
situation was known to the team, but due to the high
level of specialization others could provide little help.

During the vacation period in July, there was a six-
week-long sprint that was a total disaster in terms of
the amount of material the team committed to build
compared to what was actually built.

The results of the sprint and the previous experience
were discussed and resulted in a clear decision to have
“no more 6-week sprints, even during the vacation
season - it's too difficult to plan for that long period of
time” and the undertaking to commit only to what the
team was really sure it could do and possibly some
items taken into sprint as extra i.e. “we don't commit to
doing them, but if we happen to have free time, these
ones will be taken up”. This rule was not always
closely followed but it was easy to see that in the end
of the sprint the team and Product Owner were more
satisfied when this rule was followed more.

4.6. Sprint

In the observed case it was difficult to track the
progress during the sprint and to react to the tracking
results being the biggest sprint concept related
challenge. Only minor problems were observed with
management trying to interfere mid-sprint.

4.6.1. Challenge 9: Difficulty in tracking progress
and in using the results of the tracking. Burndown
charts and tracking work in-sprint are supposed to help
the team coordinate efforts and meet or adjust to sprint
commitments, when needed. Unfortunately the results
of the careful tracking take time to become visible;
some people become bored with the need to play with
the childish cards and tracking process. Also tracking
brings less benefit, when applied to a specialized team.
If the team members are hardly able to help each other,
then why track?

From the beginning of the adoption journey in May,
the specialized team members did not like splitting the
product backlog items into tasks and had a single task
for the whole sprint. Some specialized work was
deliberately tracked out of the product backlog.
Specialists tended to ignore the technical means
supposed to aid the collaboration. For example, they
tended not to write, update or move task cards during
the daily stand-ups.

In June there was a discussion about what kind of
task deserved a task card and for what (the reason to
have a card per bug was to talk over a pile of bug fix
task cards during the retrospective).

In June the issue of task estimation and updates
being difficult and not too meaningful was raised
again. Some team members wanted to update the time
spent on the task, not the time still needed for the
completion.

In mid-June the E-team came up with an
improvement the daily standup. To make it easier for
the Scrum Master to follow up the changes (e.g. when
copying them to electronic form), when something was
changed in the task, its card was flipped upside down
as shown in Figure 2.

Figure 2. Task card flipped upside down for

easier tracking
In August several people were happy about the idea

to have a number-of-tasks based on a burndown chart.
After the emotional investment in the idea it motivated

them to create tasks and follow the idea.
In September the E-team came up with an

improvement for sprint backlog maintenance: not to
estimate it in hours, but to have task cards of
physically different sizes as shown in Figure 3. In this
way a full card was a big task, a half-card was a normal
task, and quarter-card was a small task. When
calculating burndowns, the sizes were to be counted as
4, 2, and 1 respectively.

Figure 3. Task cards of different size. A part of

the team table
In September a large number of excel sheets and

backlogs started going out of control and even sprint
backlogs were not really visible on the intranet.

In September all the teams were against the
common product backlog for three teams, as it was too
difficult to understand, when it was known in advance
which team is going to work on which task.

4.6.2. Challenge 10: Management interfering too
much. The team’s self-organization is one of the
Scrum corner stones. It does not match traditional ways
of developing software and at times management tries
to interfere. The department developers were lucky not
to have too much management interference even before
Scrum, although it could still happen that managers
came with sudden important requests

When the adoption started the Product Owner
sometimes had to be asked to stay silent during the
daily Scrum, otherwise the team would not be able to
fit into 15 minutes and would run in too many details.

In April the same Product Owner sometimes asked
concrete team members to do a critical task without
consulting the team. However, once the Product Owner
became confident that the team was not going to ignore
the critical issues he stopped interfering during the
iteration except for the specialists described above who
did a considerable amount of work “out of Scrum”.

In May the team even developed a (not always
followed) rule that most of the demos should be

accepted before the sprint review meeting.
All in all it was found that busy product owners

were generally happy not to micromanage once they
were confident that critical issues were going to be
fixed relatively soon.

4.7. Sprint review

During the course of our observation we did not
observe any challenges specific to the sprint review.

4.8. Sprint retrospective

During our observation we did not observe any
challenges specific to the sprint retrospectives other
than the ones already described above.

5. Discussion

Based on our analysis most of the issues identified
can be traced back to the three basic challenges. These
challenges form the principal lessons-learned from this
study.

1. Transition from a specialist-based solo
development to a cross-functional team development:
learning to take as a unit of development a team rather
than a single developer. It can require quite a
significant social change from the solo-oriented
software development into a cross-functional team able
to commit and be accountable as a team. We observed
a number of challenging situations related to the fact
that the specialized team members were limited to
help their peers or even had little interest in doing so
because they had so many of their “own” tasks.

2. Change in the role of the management: The need
for the management to decide about a high level vision
and real priorities. The prioritization issue was deemed
to be one of the most critical success elements in
Scrum. While Scrum clearly raises the issue of the
human capacity available for a project, the
organization may not be willing to accept the fact that
there are too many parallel projects running. In the
previous development model, this issue was not clearly
present.

 3. Persistence and determination in the course of
the continuous improvement. As Schatz and
Abdelshafi [19] pointed out when the situation
becomes somewhat better than the starting point, the
team and stakeholders can become “bored” with the
process. When it is not everyone’s main focus, it
becomes easy to lose sight of the Agile principles that
brought success in the first place and to start slipping
back to the old practices.

 This study covers a single adoption case only and

therefore further research is required for
generalizations to be made. However, in this article
some important lessons, which can be useful for other
companies, were learned. Firstly, it is wise to pay
special attention to the three basic challenges above
whenever Scrum is to be adopted in a similar research
intensive multi-team multi-project situation. Secondly,
if the aim is to succeed in such an environment it is
best to make advance preparations for ways of
integrating the solo specialists into a cross-functional
team, for ways of motivating the management to
prioritize decisions on a regular basis and for ways of
creating incentives (not necessarily monetary ones) to
sustain continuous improvement after the initial
adoption period.

6. Conclusion

To our knowledge the adoption of the Scrum
process in a multi-team context with teams working
simultaneously on several projects is poorly addressed
in the existing literature. In this study we examined this
type of situation to determine what types of challenges
emerge doing the adoption of Scrum in such an
environment. Currently, the case department has a
positive impression of the Scrum process and it is to be
used as the primary tool to develop software. However,
the challenges we identified are applicable to other
similar organizations adopting Scrum.

The results of our empirical observations add to the
body of empirical evidence on the challenges in the
adoption process of Scrum As an answer to our
research question (How can Scrum be used in a multi-
team and multi-project environment and what
challenges, if any, emerge from the empirical
qualitative evidence?) ten specific challenges were
identified during the course of this case study.
Furthermore, the case application of Scrum in research
intensive team increases our understanding of the
obstacles in different practical situations.

There are several limitations in the study that should
be acknowledged. The observed time period was
relatively short, i.e. only eight months. Yet, we
consider it to be long enough to consider the adoption
phase of the Scrum process. As only one person
observed the teams in action, there is always a chance
that due to the researcher’s bias some challenges or
factors may have gone unnoticed. This was mitigated
by the discipline of keeping the research diary
throughout the observation period and following a
research protocol in doing so.

We believe that the results obtained can be directly
used by the industry in similar situations. However, as
the data presented by our study covers only a single
adoption case only, there is room for more research in

the area to derive more general adoption challenges.
The collection of qualitative data in a longitudinal
study, such as this, enables the use of theoretical lenses
in the future. This is necessary to better understand the
dynamics of the adoption process of Scrum in a wider
context.

7. References

[1] O. Salo and P. Abrahamsson, "Agile Methods in
European Embedded Development Organizations: a survey
study of Extreme Programming and Scrum." IET Software,
2008, vol 2, pp. 58-64.
[2] T.Dybå and T.Dingsøyr, "Empirical Studies of Agile
Software Development: A Systematic
Review", Information and Software Technology, 2008,
doi: 10.1016/j.infsof.2008.01.006
.
[3] G. Cloke, "Get Your Agile Freak On! Agile Adoption at
Yahoo! Music", in AGILE 2007, 2007, pp. 240-248.
[4] A. Begel and N. Nagappan, "Usage and Perceptions of
Agile Software Development in an Industrial Context: An
Exploratory Study", in Empirical Software Engineering and
Measurement, 2007. ESEM 2007. First International
Symposium on, 2007, pp. 255-264.
[5] B. Greene, "Agile methods applied to embedded
firmware development", in Agile Development Conference,
2004, 2004, pp. 71-77.
[6] ITEA-AGILE, "Agile software development of embedded
systems", Newsletter, no.2, 2006, available online at
http://www.agile-itea.org/public/deliverables/D.6.4.4_ITEA-
AGILE-Newsletter2-2006.pdf
[7] L. Rising and N. S. Janoff, "The Scrum software
development process for small teams", Software, IEEE, vol.
17, pp. 26-32, 2000.
[8] M. Lindvall, D. Muthig, A. Dagnino, C. Wallin, M.
Stupperich, D. Kiefer, J. May, and T. Kahkonen, "Agile
Software Development in Large Organizations", Computer,
vol. 37, pp. 26-34, 2004.
[9] J. Sutherland, C. R. Jakobsen, and K. Johnson, "Scrum
and CMMI Level 5: The Magic Potion for Code Warriors",
in AGILE 2007, 2007, pp. 272-278.
[10] B. Boehm and R. Turner, "Management challenges to
implementing agile processes in traditional development
organizations", Software, IEEE, vol. 22, pp. 30-39, 2005.
[11] K. Schwaber and M. Beedle, "Agile software
development with Scrum", in Series in agile software

development Upper Saddle River, NJ: Prentice Hall, 2002, p.
21.
[12] K. Schwaber and M. Beedle, "Agile software
development with Scrum", in Series in agile software
development Upper Saddle River, NJ: Prentice Hall, 2002,
pp. 31-56.
[13] K. Schwaber, Agile project management with Scrum.
Redmond, Wash.: Microsoft Press, 2004.
[14] F. D. Davis, "Perceived usefulness, perceived ease of
use, and user acceptance of information technology", MIS
Quarterly, vol. 13, pp. 319-340, 1989.
[15] A. Langley, "Strategies for Theorizing from Process
Data", The Academy of Management Review, vol. 24, pp.
691-710, 1999.
[16] K. Silva and C. Doss, "The Growth of an Agile Coach
Community at a Fortune 200 Company", in AGILE 2007,
2007, pp. 225-228.
[17] R. Moore, K. Reff, J. Graham, and B. Hackerson,
"Scrum at a Fortune 500 Manufacturing Company", in
AGILE 2007, 2007, pp. 175-180.
[18] N. Sridhar, M. RadhaKanta, and M. George,
"Challenges of migrating to agile methodologies", Commun.
ACM, vol. 48, pp. 72-78, 2005.
[19] B. Schatz and I. Abdelshafi, "The agile marathon", in
Agile Conference, 2006, 2006, p. 8 pp.
[20] M. Striebeck, "Ssh! We are adding a process... [agile
practices]", in Agile Conference, 2006, 2006, p. 9 pp.
[21] A. Mahanti, "Challenges in Enterprise Adoption of
Agile Methods - A Survey", Journal of Computing and
Information Technology, vol. 14, p. 10, 2006.
[22] M. Cohn and D. Ford, "Introducing an agile process to
an organization [software development]", Computer, vol. 36,
pp. 74-78, 2003.
[23] J. Packlick, "The Agile Maturity Map A Goal Oriented
Approach to Agile Improvement", in AGILE 2007, 2007, pp.
266-271.
[24] R. Hugh, S. Judith, and S. Helen, "Ethnographically-
informed empirical studies of software practice", Inf. Softw.
Technol., vol. 49, pp. 540-551, 2007.
[25] D. A. Scho�n, The reflective practitioner : how
professionals think in action. Aldershot: Arena, 1995.
[26] B. G. Glaser and A. L. Strauss, The discovery of
grounded theory : strategies for qualitative research.
Hawthorne, N.Y.: Aldine de Gruyter, 1967.
[27] A. L. Strauss and J. M. Corbin, Grounded theory in
practice. Thousand Oaks: Sage Publications, 1997.

